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We present heavy-meson spectrum results obtained using the Oktay–Kronfeld (OK) action on
MILC asqtad lattices. The OK action was designed to improve the heavy-quark action of the
Fermilab formulation, such that heavy-quark discretization errors are reduced. The OK action
includes dimension-6 and -7 operators necessary for tree-level matching to QCD through order
O(Λ3/m3

Q) for heavy-light mesons and O(v6) for quarkonium, or, equivalently, through O(a2)

with some O(a3) terms with Symanzik power counting. To assess the improvement, we extend
previous numerical tests with heavy-meson masses by analyzing data generated on a finer (a ≈
0.12 fm) lattice with the correct tadpole factors for the c5 term in the action. We update the
analyses of the inconsistency parameter and the hyperfine splittings for the rest and kinetic masses.
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1. Introduction

The parameter εK quantifies indirect CP violation in the neutral kaon system. At present, the
tension between the Standard Model (SM) and experimental values of |εK | is 3.4σ [1] with the
value of |Vcb| from the exclusive decay B→ D∗`ν [2]. This value of |Vcb|, the most precise from
exclusive decays to date, is 3σ away from the value from inclusive decays [3]. The largest error
in the εK determination in the SM comes from |Vcb|, so it is crucial to improve the precision of
exclusive

The dominant error of exclusive |Vcb| comes from the heavy-quark discretization error in the
form-factor calculation of the semi-leptonic decay B→D∗`ν [2]. Hence, the SWME Collaboration
plans to use the Oktay–Kronfeld (OK) action [4] in the upcoming calculation in order to reduce
it efficiently. This action is an improved version of the Fermilab action [5], which incorporates
the dimension-6 and -7 bilinear operators needed for tree-level matching to QCD through order
O(Λ3/m3

Q) for heavy-light mesons and O(v6) for quarkonium. We expect that the bottom- and
charm-quark discretization errors could be reduced below the current 1% level. A similar error for
the charm-quark could also be achieved with other highly-improved actions, such as HISQ [6].

For the heavy-meson spectrum, we present results for the inconsistency parameter [7, 8] and
hyperfine splittings, all of which test how well the Fermilab and OK actions perform in practice.
For this purpose, we follow the strategy of our previous work [9], in which the c5 term was not
completely tadpole-improved. In this work, we now implement the tadpole improvement for c5

completely. We also extend the data analysis to data sets produced on a finer (a≈ 0.12 fm) MILC
asqtad lattice.

2. Meson Correlators

We use a subset of the MILC N f = 2+ 1 asqtad ensembles at a = 0.12 fm and 0.15 fm [11],
summarized in Table 1. We compute meson correlators C(t, ppp)

C(t, ppp) = ∑
xxx

eippp·xxx〈O†(t,xxx)O(0,000)〉 . (2.1)

The interpolating operators O(x) are

Ot(x) = ψ̄α(x)Γαβ Ωβ t(x)χ(x) (heavy-light meson) , (2.2)

O(x) = ψ̄α(x)Γαβ ψβ (x) (quarkonium) , (2.3)

where the heavy-quark field ψ is that of the OK action, while the light-quark field χ is that of the
asqtad action. The spin structure is Γ = γ5 for the pseudoscalar and Γ = γi for the vector meson.

a(fm) N3
L×NT β aml ams u0 a−1(GeV) Nconf Ntsrc

0.12 203×64 6.79 0.02 0.05 0.8688 1.683+43
−16 484 6

0.15 163×48 6.60 0.029 0.0484 0.8614 1.350+35
−13 500 4

Table 1: Parameters of the MILC asqtad ensembles with N f = 2+1 flavors [10].

2



Heavy-Meson Spectrum Tests of the OK Action Yong-Chull Jang

-0.2

-0.1

0

0.1

0.2

10 20

r
(t
)

t

A = 0.101(2)
E = 2.301(2)

Ap = −0.035(18)
Ep = 2.500(47)

Uncorrelated Fit

(a) Residual

2.28

2.30

2.32

2.34

2.36

2.38

2.40

2.42

10 20

m
e
ff

t

Correlator Fit

(b) Effective Mass

Figure 1: r(t) and meff(t) for a pseudoscalar heavy-light meson correlator at κ = 0.038 and ppp = 000,
obtained using the uncorrelated fit.

The taste degree of freedom for the staggered fermion is obtained from the 1-component field χ

with Ω(x) = γ
x1
1 γ

x2
2 γ

x3
3 γ

x4
4 [12, 10].

We compute 2-point correlators with 4 different values of hopping parameter: κ = 0.038,
0.039, 0.040, 0.041. We fix the valence light-quark mass to ams in Table 1. We choose 11 meson
momenta, appp = (2π/NL)nnn: nnn = (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,0), (2,1,1), (2,2,0),
(2,1,1), (3,0,0), (4,0,0). To increase statistics, correlators are computed at 6 different source time
slices on each gauge configuration.

Each correlator is folded in half, and then fit to the function

f (t) = A{e−Et + e−E(T−t)}+(−1)tAp{e−E pt + e−E p(T−t)} , (2.4)

where A, Ap, E, and E p are determined by fitting. Figure 1 shows the correlator fit results with fit
residual r(t) and effective mass meff(t) for a pseudoscalar heavy-light meson data:

r(t) =
C(t)− f (t)
|C(t)|

, meff(t) =
1
2

ln

(
C(t)

C(t +2)

)
. (2.5)

We exclude the largest momentum, nnn = (4,0,0), from the dispersion relation fits, because these
data are very noisy, and the correlator fits are poor.

3. Dispersion Relation

Once we obtain the ground state energy at each momentum, we fit them to the non-relativistic
dispersion relation [5],

E = M1 +
ppp2

2M2
− (ppp2)2

8M3
4
− a3W4

6 ∑
i

p4
i , (3.1)

where M1 (M2) is the rest (kinetic) mass. In the Fermilab formulation, the kinetic mass is chosen to
be the physically relevant mass [5], because that choice minimizes discretization errors in matrix
elements and in mass splittings.
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Figure 2: Fit results of pseudoscalar meson spectrum to dispersion relation at κ = 0.038.

When fitting the data to the dispersion relation, we use the full covariance matrix and no
Bayesian prior information. In Fig. 2, we plot results after subtracting from the data the W4 term,
which parametrizes the breaking of O(3) rotational symmetry. Here, Ẽ is defined to be

Ẽ = E +
a3W4

6 ∑
i

p4
i . (3.2)

Note that the two data points at momenta nnn = (2,2,1) and (3,0,0) lie on top of each other due to
the removal of the W4 term. As one can see from the plots, fits to Eq. (3.1) are good enough to
determine the kinetic mass reliably.

4. Inconsistency Parameter

The inconsistency parameter I, Eq. (4.1), is designed to examine the improvements by O(ppp4)

terms in the action [7, 8]. This is, in particular, good for probing the improvement by the OK
action, because it isolates those improvement terms by construction.

I ≡
2δMQq− (δMQQ +δMqq)

2M2Qq
=

2δBQq− (δBQQ +δBqq)

2M2Qq
, (4.1)

where

δMQq ≡M2Qq−M1Qq (4.2)

is the difference between the kinetic (M2) and rest (M1) masses. By construction, I vanishes in the
continuum limit, and it should be closer to 0 for more improved actions.

The meson masses M can be written as a sum of the perturbative quark masses m1 or m2 and
the binding energy B as follows:

M1Qq = m1Q +m1q +B1Qq , M2Qq = m2Q +m2q +B2Qq . (4.3)
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Figure 3: Inconsistency Parameter I. Data labels denote κ values. The square (green and orange)
represents old data sets at a = 0.15 fm and circle (magenta) represents new data sets at a = 0.12 fm.
Vertical lines represent physical masses of B0

s (dotted) and D+
s (dash-dotted) mesons. Near the B0

s

meson mass, I almost vanishes for the OK action, but for the Fermilab action it does not. This
behavior suggests the OK action is significantly closer to the continuum limit.

These formulas define B1 and B2. Then, substituting them into Eq. (4.1), the quark masses cancel
out, and the inconsistency parameter becomes a relation among the binding energies

δBQq =B2Qq−B1Qq . (4.4)

The corresponding quantities for Eqs. (4.2), (4.3), and (4.4) for heavy (QQ) and light (qq) quarko-
nium are defined similarly. Because light quarks always have ma� 1, the O((ma)2) distinction
between rest and kinetic mass is negligible. We therefore omit δMq̄q (or δBq̄q) when forming I.

Considering the non-relativistic limit of quark and antiquark system, for S-wave case, the spin-
independent binding-energy difference can be expressed as follows [8, 10]:

δBQq =
5
3
〈ppp2〉
2µ2

[
µ2

(m2
2Q

m3
4Q

+
m2

2q

m3
4q

)
−1
]
+

4
3

a3 〈ppp2〉
2µ2

µ2

[
w4Qm2

2Q +w4qm2
2q

]
+O(ppp4) , (4.5)

where µ
−1
2 = m−1

2Q
+m−1

2q , and m2, m4, and w4 are defined through the quark dispersion relation
analog of Eq. (3.1). Equation (4.5) holds for the quarkonium δBQQ too. The leading contribution
of O(ppp2) in δB vanishes when m4 = m2 and w4 = 0, also for orbital angular momenta beyond
the S wave [10]. The OK action matches m4 = m2 and w4 = 0, so the two expressions in square
brackets vanish (at the tree level), leaving I ∼ ppp4 ≈ 0.

The result for the pseudoscalar channel is shown in Fig. 3. We find that I is close to 0 for the
OK action even in the mass region where the Fermilab action produces very large |I| ≈ 1. This
outcome provides good numerical evidence for the improvement expected with the OK action. It
also shows that the new data set with the coarse (a = 0.12 fm) ensemble data covers the B0

s mass.
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Figure 4: Hyperfine splitting obtained from the kinetic mass vs. that obtained from the rest mass.

5. Hyperfine Splittings

The hyperfine splitting ∆ is defined to be the difference in mass between the vector (M∗) and
pseudoscalar (M) mesons:

∆1 = M∗1 −M1 , ∆2 = M∗2 −M2 . (5.1)

The hyperfine splitting of the kinetic mass (∆2) has a larger error than that of the rest mass (∆1),
mainly because the kinetic mass requires correlators with ppp 6= 000, which are noisier than ppp = 000.
Interestingly, with the OK action the statistical error is about 1/6 of that with the Fermilab action,
as one can see in Fig. 4. Thus, the OK action is not only more accurate in the sense of improved
action but also statistically more precise. From Eq. (4.4), we have

∆2 = ∆1 +δB∗−δB . (5.2)

Spin-independent contributions to the binding energies cancel, so the difference in hyperfine split-
tings ∆2−∆1 diagnoses the improvement of spin-dependent O(ppp4) terms. As one can see in Fig. 4,
the OK action shows clear improvement for quarkonium: the OK results lie close to the continuum
limit ∆2 = ∆1 (the red line). The heavy-light results do not deviate much from the line ∆2 = ∆1

even with the clover action, and remain in good shape with the OK action.

6. Conclusion and Outlook

The results for the inconsistency parameter show that the OK action improves the O(ppp4) ef-
fects, in practice as well as in theory. The hyperfine splitting shows that the OK action signifi-
cantly improves the higher-dimension chromomagnetic effects on the quarkonium spectrum. For
the heavy-light system, the data for the hyperfine splittings at 0.15 fm suffer from statistical errors
that are too large to draw any firm conclusion.

The SWME Collaboration plans to determine |Vcb| by calculating B→ D(∗)`ν semi-leptonic
form factors with the OK action and commensurately improved currents. For this purpose, a project
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to obtain the improved current relevant to the decay B→ D∗`ν at zero recoil is underway [13].
Another component of this plan is to calculate the 1-loop coefficients for cB and cE in the OK
action. A highly optimized conjugate gradient inverter using QUDA is under development [14].
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